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Abstract—An examination of heat transfer between two parallel plates due to electroconvection is
presented. Unipolar ion injection can be brought about at either the upper or lower electrode with heating
of the liquid layer from above or below (stable or unstable stratification). The four possible configurations
are treated separately. For the transitory regime, an analysis is carried out from which it is possible to
calculate the thermal Nusselt number by considering an analogy between the experiment and an electric
circuit of a resistance and capacitor in parallel. The values thus approximated, showing increases of up to
an order of magnitude in the Nusselt number show very good agreement with the steady-state data. It is
thus demonstrated that the electrical effects dominate totally over buoyancy effects for all cases considered.
A short analysis of the steady state yields the relevant parameters governing the heat transfer: /d* for the
fully turbulent flow and /¥4 in non-turbulent conditions.

1. INTRODUCTION

NATURAL convection of heat in a fluid often shows
itself to be a relatively inefficient means of thermal
transfer with many industrial processes using mixed
convection or other outside body forces to make flows
more turbulent. Therefore, the idea of imposing such
constraints on thermal flows has the aim of enhancing
mixing and thus heat transfer within the fluid. In
particular, using electrical forces to this end is referred
to as electro-thermohydrodynamics (ETHD). Work
on this subject dates back to the mid-1930s with
Senftleben and Braun’s experiments using gases [1]
and then those of Ahsmann and Kronig [2] in 1950
on liquids. In the last 35 years, development of this
topic has continued and today there is a large amount
of published work dealing mainly with the application
of the process to heat exchangers, pool boiling, con-
densation, fusion, etc. To discuss this literature in
detail would bring us well outside the scope of this
paper and we content ourselves to citing the excellent
review by Jones [3] where a complete bibliography is
given along with a classification of the various theor-
etical and experimental studies already carried out.
On a more fundamental level, we may distinguish
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between three different types of electrical force acting
on a fluid once a voltage difference is applied across
it: the Coulomb force ¢E (g is charge density; E is
the electric field) ; the dielectric force — (E?/2)Ve (¢ is
the permittivity of the fluid); and the electrostrictive
force V[(£%/2) (6¢/0p)] (p is the fluid density). For the
second of these, the permittivity gradient within the
liquid would be induced by the imposed temperature
gradients (see for example refs. [4-6]). However,
under d.c. conditions with space charge creation in the
fluid, this force is very weak compared to the Coulomb
force. It is usual to include the electrostrictive term
with the pressure. The dominant electrical body force
under these conditions is then the Coulomb force ¢E.
Physically, this refers to the effects of the imposed
electric field on the free charge (or the space charge)
present in the liquid. Generally, in experiments to
date, this charge resulted from a thermally induced
conductivity gradient within the liquid (see for ex-
ample refs. [7-13]). Stability studies in this particular
case were carried out mainly by Hoburg and Melcher
[11-13} and by Takashima and Aldridge [7]. However,
this type of space charge production is relevant to
ohmic or quasi-ohmic liquids, where a temperature
gradient will give rise to a conductivity gradient Vo
(o is the electrical conductivity of the liquid) and the
charge density ¢ is given by
q= —(¢/o)E-Vo. (1)
For dielectric liquids of low conductivity another
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injection strength parameter, ¢;d*/eV
specific heat

d  electrode gap

E  electric field

g gravitational acceleration vector
H  heat flux
!

]

K

a 0N

electrical current
current density
ion mobility
m  mass
M  mobility parameter, (¢/p)"*/K
Ne electrical Nusselt number
Nu Nusselt number (see also equation (22)),
Hd/xkAT
Pr Prandtl number, v/y
q charge density
Q  total heat furnished to cell
Ra Rayleigh number, SgAT d*/yv
Re Reynolds number, w’d/v
S surface area
t time

NOMENCLATURE

T temperature

T stability parameter (see equation (2)),

eV/Kn

temperature difference between electrode

plates

V' applied electrical voltage

w  velocity component perpendicular to
electrode.

AT

Greek symbols
/i thermal expansion coefficient
& liquid permittivity
n  dynamic viscosity of liquid
0 temperature fluctuation
xk  thermal conductivity
kinematic viscosity of liquid
p  density of liquid
o electrical conductivity
T time constant
¥y thermal diffusivity
Q  control volume.

source of free charge becomes dominant compared to
this. This second process of charge creation is referred
to as ion injection, and occurs at one or both elec-
trodes. It is a common phenomenon, taking place
whenever an electric field is applied between two metal
electrodes in an insulating liquid [14]. Our exper-
iments to date indicate that, to first approximation,
this charge injection, and hence the Coulomb force,
may be considered as being independent of tem-
perature gradients. Little other work has been done
on this particular case of electroconvective heat trans-
fer in liquids brought about by space charge injection
at an electrode. In gases, however, Franke [15] among
others showed an increase in heat transfer in air using
the ionic wind brought about by corona injection. A
theoretical analysis as well as some experiments were
carried out by Lazarenko er al. [10], who also derived
some relevant non-dimensional parameters. Some
preliminary experiments were performed with forced
flows in tubes using radial fields by Fernandez and
Poulter {16]. A more thorough analysis on this has
recently been presented by Mizushina et al. [17] with
some interesting results. Stability analysis of the
electroaerodynamic case was carried out by Hoburg
[18] who also demonstrated experimentally the
increase in Nusselt number due to injection [19]. Fin-
ally, before presenting our work here, let us make note
of the paper by Bologa er al. [20] who examined the
heat transfer augmentation due to an electric field
being imposed across a gas—solid suspension flow.
They examined the cases for both conducting and
insulating particles. We mention this since under cer-
tain conditions, flow structures due to the motion of

dielectric charged particles in air are quite similar to
those due to ions in dielectric liquids [21].

The problem we are examining here is that of
altempting to characterize the heat transfer aug-
mentation in a simple geometry of a horizontal liquid
layer between two parallel plates subject to a tem-
perature gradient and an electric field. Depending on
the sign of the latter, ion injection may be induced on
the upper or lower plate electrode. Two further cases
are considered when we change from unstable to
stable thermal stratifications. We carried out all exper-
iments at fixed heat flux.

In the next section we give a résumé of what is
known of eclectrohydrodynamic (EHD) flows in
dielectric liquids due to unipolar ion injection and
attempt to give an intuitive idea of this phenomenon
since it is unlikely that researchers in pure heat transfer
will be familiar to any great extent with EHD. We will
also briefly mention the classical Rayleigh-Bénard
problem before presenting our experimental set-up.
Thereafter the cxperimental results in both transient
and steady-state regimes are presented and discussed
in the light of some mathematical modelling of the
phenomena.

2. ELECTROCONVECTION AND NATURAL
CONVECTION

When a layer of insulating dielectric liquid, confined
between two plane parallel metallic electrodes, is sub-
jected to an applied d.c. voltage ¥, the current passing
through the circuit will generally have a variation
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FiG. 1. Typical current voltage characteristic for silicone oil
plus TIAP in the experimental cell. The dashed line indicates
the theoretical saturation current.

similar to that shown in Fig. 1. Clearly there are
two different electrical conduction regimes. For low
voltages (the ohmic regime), the current / varies pro-
portionally to ¥ and is due to a slight perturbation
by the electric field of the equilibrium between the
digsociation of electrolytic impurities and recom-
bination of ions in the liquid bulk. The dissociation
process is limited and therefore the current, in theory,
will eventually saturate. However, this does not hap-
pen and for higher voltages, 7 increases and varies as
1 with e > 1. Félici [14] demonstrated that this is due
to a second source of charge at (at least) one of the
electrodes, an unavoidable phenomenon when using
metal electrodes in liquids. This is ion injection and it
is electrochemical in nature {14, 22]. Usually we deal
with injection at one electrode only. This was verified
by electro-optic measurements of the electric field
which showed it to be lower on one electrode {injector)
and higher on the other (collector). In such cases we
refer to unipolar ion injection. The variation of the
current with the voltage depends on the injection
strength and on movement of the liquid. Such motion
was clearly pointed out via Schlieren techniques [23,
24]. (Note that the typical currents involved are par-
ticularly low—in our apparatus / is of the order of
a microampere—and magnetic effects are totally neg-
ligible.)

The problem of hydrodynamic stability of a layer
of insulating liquid subjected to unipolar ion injection
has been well analysed [25, 26]. Briefly, the electric
field increases as we move away from the electrode
where injection occurs. From the current density
relationship: j=¢gKE (=constant) (K is ionic
mobility), the charge density ¢ must be decreasing
away from the injector. This is a potentially unstable
situation. (This is similar to the Rayleigh-Bénard
problem of a horizontal fluid layer heated from below.
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In that case, the temperature is a decreasing function
with height while liquid density increases.) Intuitively,
if we consider the virtual displacement of a fluid ‘par-
cel” which conserves its charge towards the collector,
we see that it is then subject to a greater Coulomb
force (buoyancy force for the Rayleigh-Bénard case)
than the fluid immediate to it. It will thus have a
tendency to continue its displacement towards the
collector. The coupling between charge and velocity
perturbations is then positive {27].

However, instability ‘as a result of this positive
coupling will only occur if the electrical (buoyancy)
force is strong enough to overcome viscous damping
[28, 29] ([30]). The ratio between the electrical and
viscous forces is the stability parameter 77 [26] given
by

eV

T = Kn (2)

where # is the dynamic viscosity of the liquid. (In the
Rayleigh-Bénard case the relevant stability parameter
is the Rayleigh number [31].) Perturbations of small
amplitude are damped out for T less than some criti-
cal value, say 7, and amplified for higher values. The
numerical value of T, depends on the non-dimensional
injection strength parameter C,

C, = gdileV. (3)

Here ¢, is the injected space charge density at the
injector and d the electrode gap. See also Appendix A
for an explanation and evaluation.

Though there are a number of similarities between
this and the Rayleigh-Bénard problem, there is a
rather fundamental difference also. In the EHD case,
the ions also move relative to the liquid with a *drift
velocity” KE. The importance of this ionic drift was
brought into the open in a non-linear stability analysis
by Atten and Lacroix [32]. They demonstrated the
existence of a finite amplitude solution to the govern-
ing equations for subcritical conditions. That is, there
exists for 77 < T, (linear stability criterion), a non-
linear stability criterion 7T, such that, for
Ty < T < T,, there is a stable solution with maximum
velocity amplitude greater than the drift velocity. This
indicates the presence of hysteresis phenomena for
both velocity and current, a situation which was con-
firmed experimentally [28, 32]. (This does not arise
for Rayleigh—Bénard convection.)

Above the critical stability value, the liquid motion
has an important effect on charge transport in the case
of strong unipolar injection. When 7° < T, the ions
cross the electrode gap with velocity KE. For IT” > T,,
two major regimes of motion are characterized: a
viscous regime where the Reynolds number Re, evalu-
ated with the maximum velocity amplitude is much
less than 10, and an inertial regime where it is much
greater than 10. In other words, for Re « 10 the move-
ment is structured such that the horizontal scale of
the largest convective cells is of the same order of
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magnitude as the electrode gap (cf. cellular Rayleigh—
Bénard convection). A semi-quantitative analysis
shows the vertical velocity w’ to be proportional to
)2 and the current 7 to V*? [28, 29]. An electrical
Nusselt number Ne was defined for the current (anal-
ogous to that used in thermoconvection) and this was
found to vary as (T7/T.) """

For T" » T, the movement becomes fully turbulent
(Re » 10). Charge density perturbations are very
small compared to the mean value (nonpermanence
of any cellular structure) and w’ varies linearly with
E [29]. Felici [33], by considering the conversion of
electrical energy (ieE?) to mechanical energy (pw'?)
developed the concept of an electrohydrodynamic
mobility (¢/p) "2, Experimental measurements showed
that w' = Ye/p)"2E [28, 29]. The ratio between the
EHD mobility and the true ion mobility K is the
parameter M (= (¢/p)"*/K). The current / in this
regime varies as ¥ and Ne is constant (= \/(M/’S)),

To finish, we refer readers to a number of interesting
articles and references therein on Rayleigh-Bénard
convection [34-41]. Few analytical attempts to
account for the experimental observations have been
tried, the most noteworthy being that of Kraichnan
[42].

3. EXPERIMENTAL SET-UP AND
PROCEDURES

3.1. The experiment

The liquid layer was confined between two copper
plate electrodes (active surface area 15.75 x 10.4 cm?)
and a side wall unit of Plexiglas. The electrode gap d
could be changed by replacing the Plexiglas frame
(d =3, 5 or 7 mm). One of the electrodes, which we
will call plate 2, was kept at constant temperature via
the circulation of silicon oilt inside it from a thermo-
stated bath. This plate was covered in polyurethane
foam to avoid any heat loss to or gain from the sur-
roundings. The other electrode (plate 1), of mass 2.48
kg had a heating resistance attached to it which could
furnish between 0 and 30 W of power. We operated
at constant heat flux. The entire apparatus was placed
inside a thermally insulated box which could be
‘turned over’ in order to have the heat flux from the
bottom or from the top of the fluid layer (see Fig. 2).

The temperatures of the plates were measured using
platinum probes and a high precision thermometer
(£0.01"°C). One probe was placed in direct contact
with plate 1. However, since the high voltage (positive
or negalive) was applied to plate 2, there was some
difficulty in measuring its exact temperature. It was
necessary to electrically insulate the probe, while at
the same time ensure as good a thermal contact as
possible. We got around this problem by attaching

+ With this electrode brought into contact with the high
voltage source, the cooling liquid had to be electrically insu-
lating in order to avoid any clectrical leakage.
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the probe to the cnd of a small sapphire rod, the other
end of which was covered in a thin layer of silver and
soldered to the copper plate. (Sapphire is an excellent
heat conductor and a good clectrical insulator.) To
minimize thermal losses around this probe, we sur-
rounded the sapphire rod with two copper bells, both
soldered to the plate clectrode (see Fig. 2). The whole
was then covered in a thick layer of polyurethanc.
Electrical connections from the probe to the ther-
mometer were made via an araldite tube which crossed
through the polyurethane and insulated them [rom
the high voltage. To protect the probe from possible
clectrical breakdown between it and the necarest
copper bell, a small metal sphere was placed around
the probe at the top of the sapphirc rod and earthed
(Fig. 2).

The outer container was made of wood, poly-
urethane and aluminium and was thermostated using
a second bath. The temperature inside the container
was kept equal to that of plate 1, so that this plate
would lose no heat to the surroundings. Therefore,
the heat furnished to plate 1 via the heating resistance
passed entirely through the cell.

The probe on plate 2 was calibrated using a third
probe attached to the active surface of that plate. This
was carried out at zero applied voltage. Thus, via
the calibration, we could measure instantaneously the
temperatures on each plate (7, and 7) as well as
the temperature difference AT across the layer. The
overall error in the measurements was never greater
than 3% for all the results reported here (for
AT > 1'C, the error does not exceed 2%, the precision
for AT being 10 * C). In the experiments we recorded
both steady-statc valucs and the evolution in time of
AT until steady state.

The working liquid was silicone o1l (Rhodorsil 47
V 10), with relative permittivity ¢, = 2.63; density
p=93x107 kg m *; kinematic viscosity v =10 °
m?s "' specific heat C, = 1.63x 10°J kg ' C 'and
thermal conductivity k = 0.13Jm ' C 's ' The
liquid was saturated with the salt TiIAP [22, 43] in
order to provoke a steady ion injection at one of the
clectrodes. For copper electrodes with silicone oil and
TiAP we verified that there is an injection of negative
charge from the cathode. Thus, positive voltage
applied to plate 2 results in negative charge injection
from plate 1, whereas negative voltage causes it to
occur from plate 2.

Thus, by turning the cell “upside down’ or not and
by changing the polarity (or sign) of the applied volt-
age we have four possible situations: (i) heating and
injection from below or (ii) from above, (i) heating
from below and injection from above or (iv) heating
from above and injection from below. Results were
obtained for each case. Theoretical analysis of the
stability of each of these situations shows the import-
ance of distinguishing between them at least around
the critical values of 7" and Ra [44].

Before presenting the results for combined ion injec-
tion and temperature difference we will first give the
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FIG. 2. Schematic of the experimental cell: 1, fixed temperature copper plate ; 2, Plexiglas frame; 3, heated
copper plate; 4, heating resistance; 5, liquid layer; 6, polyurethane layer (thermal insulation); 7, outer
copper dome: 8, inner copper dome; 9, earthed copper protection around probe P,; 10, araldite tube
containing connections from probe P,; 11, sapphire rod. P, and P, are the temperature probes (platinum).

electrical characteristics of the cell and a2 rundown
of the method of evaluation of the thermal Nusselt
number Nu, which characterizes the non-dimensional
heat transfer across the layer.

3.2, Isothermal electrical results

Figure 1 shows a typical current voltage curve taken
between two experimental runs. The injection current
varies as V> with a &~ 1.5 for ¥ > 4 kV. We must
separate the two components of the current: the con-
ductive (ohmic) one and the injection one, since only
the latter is relevant in the Coulomb force term gE.
This is done by evaluating the saturation level of the
former and subtracting it from the total current
(dashed line indicates the saturation current). The
corresponding saturation voltage (that for which the
current begins to saturate) in the example in question
is about 750 V.

To evaluate the non-dimensional injection par-
ameter C;, we make use of appropriate curves given
by Denat [45] (see also Appendix A). In most of our
experiments C; varied from about 0.55 (V = 3kV) to
0.15 (V = 15 kV). These values are not very high and
indicate that charge injection is rather weak. Under
such circumstances, we may roughly consider that the
harmonic uniform electric field is not dramatically
perturbed by the presence of the injected space charge.

3.3. Heat flux evaluation (steady state)

The heat flux across a fluid medium contains a
contribution from conduction and from convection
processes if the fluid is in motion. It is usually written
in the form

H= —kVT+pCw'T (4)

(w is the velocity component normal to the plates).
The global effect of convective heat transfer is written
in terms of the Nusselt number Nu, which is the ratio
of the mean heat flux A to the flux H, which would

exist without convection for the same temperature
difference

A A _|Ad
M= F, = TRATid ™ AT )

Nusselt number Nu is normally plotted as a function
of the Rayleigh number Ra (proportional to the tem-
perature difference)

_ BgATd
-~

Ra (6)
where f is the coefficient of thermal expansion of
the liquid and g the gravitational acceleration. To
evaluate Nu, we assumed the heat flux could be written
in the form
o =Ko AT
H=—"""" 7
y ™
where x,,, is an effective or apparent heat conduc-
tivity. This gives
_ Xapp
Ny = ” ®)
leaving us to determine «,,, for the liquid only. In
our experiment, the total heat Q breaks into two
components : one across the liquid (H,) and the other
across the Plexiglas (Hp)

Q = S H +SpHp 9

(S, and S are the surface areas of the copper plate—
liquid, and the copper plate-Plexiglas interfaces,
respectively). Using equation (7) this may be written
as

 SiKupAT | aSpkpAT
Q=" g

(10

The constant ‘a’ is included to account for the geo-
metrical shape of the Plexiglas frame as well as for
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results for an inier-electrode distance of 5 mm, for different applied voltages and heat

fluxes, with heating and injection from below, as a function of Ra.

any lack of thermal contact between it and the copper
plates. Tts value was determined experimentally under
purely conductive conditions and we found a = 0.27.

The value of Nu as a function of Ra (for no applied
electric field) is shown on Fig. 3 (lowest curve) and
agrees very well with the already known results (see
for example ref. [46]). The good agreement between
our experimental results and the classical ones con-
stitutes a test for our experimental set-up.

4. EXPERIMENTAL RESULTS

4.1. Steady-state results

Results obtained when heating and injection both
occurred at the lower electrode are given on Fig. 3 for
d = 5 mm. Values were obtained by either fixing the
heat flux and varying the applied voitage, or, fixing
the voltage (and to first approximation the injection
strength) while varying the heat flux to the liquid (H).
In the former case for each given heat flux (H) the
experimental points lie on a hyperbolic curve (full
lines). This is because of the definition of Nu (see
equation (5)) which is effectively proportional to
1/AT, that is, to the inverse of the Rayleigh number.
Then, when we increase V, and thus the Coulomb
force, the agitation of the liquid also augments. This
causes convective transport to be greater. The tem-
perature difference between the plates will then drop
and consequently Nu will rise.

When working at fixed, high enough ¥ and variable
H, we see that Nu is, to first approximation, constant.
It does not appear to depend on the Rayleigh number
at least within the range of voltages (V = 6 kV) and
heat fluxes we used. We conclude that the convective
transfer of heat is essentially determined by the elec-
trical forces, with buoyancy forces remaining globally
unimportant, This conclusion was confirmed by the
lack of any significant sensitivity of Nu on the con-
figuration used (heating or injecting independently
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FiG. 4. Nu as a function of IVd"® for d = 3 mm with heating
and injection independently from above and below.

from above or below), as we can see from the exper-
imental points on Fig. 4. The values of Nu are plotted
as a function of L, V'd’, since we estimate the flow here
to have a Reynolds number of about 10 {(approxi-
mately viscous dominated motion). A justification of
this choice of parameter is given in the short analysis
of Section 5. For the ensemble of the results (different
configurations and three liquid layer depths), it is
interesting to check for some type of asymptotic
behaviour for Nu. The set of Nusselt numbers gained
from our experiments are too weak for a proper exam-
ination of this, though we can get some insight on the
convective transport by looking at the variation of
(Nu—1). Effectively Nu takes the form {47]

Nu = 1+ {g*w*) (11)

where {g*w*) is a non-dimensional term representing
the advective transport of heat. Clearly, plotting
{Nu—1) against the electrical parameter gives an indi-
cation of the behavioural tendencies of the convection
only. This case differs from classical Rayleigh—Bénard
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FiG. 5. (Nu—1) as a function of (a) IVd® and (b) I&°. The
best fit for (a) is (/Vd;)**° and for (b) is (F4H)* 4

convection, in that here, the velocity field depends
almost exclusively on electrical forces (in the following
we consider temperature as a passive contaminant
transported by a forced advective motion induced by
the Coulomb force).

Figure 5 shows (Nu - 1) as a function of both I, vd®
(viscous regime) and f,,d* (inertial regime). Both are
presented since we can only estimate an order of mag-
nitude of the value of the Reynolds number of the
motion and this is close to the transition value between
regimes. In Fig. 5(a) (Nu—1) varies as (f,Vd),
where n = 0.36 and in Fig. 5(b) as (/,d’)" where
m 2 0.43. Both of these numbers were obtained via a
least squares fit. The dispersion of the points is rather
small. (From here on we will write f,; as 1)

Clearly, from these curves, with the experimental
results seeming to fit some power law for either par-
ameter we are left with the rather unenviable task of
deciding which is most relevant. The chief difficulty
here lies with the fact that we cannot measure the
velocity and thus evaluate the Reynolds number. We
can however attempt to approximate it by using a
velocity expression given by Félici [48] for low injec-
tion, high voltage flows. He gave

W~/ C(elp) E.

If we take a proportionality constant of approxi-
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mately }, a typical value of the Reynolds number will
be given by the expression

wd 1, v
R€~“’v“—§\/cs\/(8/i?);-

For relevant values of C; and ¥ measured throughout
our experiments we find a variation for Re ranging
from about 10 to 30. This indicates that we are in
the transition region between viscous-dominated and
inertially-dominated flows.

4.2. Transitory regime results

Since, for a given voltage, the apparent thermal
conductivity is more or less independent of the tem-
perature difference, then so too, to first approximation,
are the convective transport and the agitation of the
liquid. This behaviour should also be found in the
transitory evolution of the system. For example, if we
consider a weak perturbation of a given steady state
(modification of applied voltage or of heat supplied
to the bottom plate) it is possible to make an analogy
with an electrical circuit. If we change the voltage,
then the effective thermal conductivity {electrical con-
ductance) is rapidly altered, the characteristic time
being that of ion transit between electrodes. Alter-
natively, if we change the heat flux (i.c. the current in
an electrical circuit), the effective thermal conductivity
(electrical conductance) remains unchanged. In both
cases, relaxation to a new steady state will occur via
the cooling or heating of the bottom plate (which
plays the role of a capacitor). Thus we have the equi-
valent of a circuit of a resistance and a capacitor in
parallel and we expect the relaxation to be exponential
in time.

This is effectively what we see when we fix ¥ and
vary the heat flux by small increments between steady
states (Fig. 6). Each change in heat flux leads to the
same characteristic time. From the results we should
be able to determine the ‘conductance’ and evaluate
Kup and Nu. A mathematical expression can be
developed for this and its derivation is given in detail
in Appendix B. Basically, we use the heat conduction
equation

aT

pC,,S? +V-H=10
integrated over the different media (copper and sili-
cone oil) and solve the final first-order ordinary
differential equation to obtain the following
cxpression for the temperature difference between the
two plates as a function of time assuming no liquid
motion. (The nomenclature is also explained in the
appendix.)

(12)

TKﬂ—?}=(TMD—T9ﬁp( ?

T
Q(d,—d)) —1
+ ES—LELW——-i- aSorc) (1 Y (T)) (13)

where Q = ScH is the heat supplied and
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(dr—d\)
T = (Im G+ pCop+ M Coe) (SI+E§IZ)
(14)
From equation (13) we can see that as 1 — oo
Qds~d)
(Sure, +aSpreyy — 11001 T2 s)

and equation (13) is then written as

(T\{(1)=T3) =(T(x)=T))

—1
~[(T\(oc) = T2) = (T,(0)~ T )] exp (*T ) (16)
whence the exponential behaviour is seen from the
function

Ty —-T, ()
PO =0 =Ty an
In equation (14). the terms of the numerator represent
the calorific capacities of the liquid, the Plexiglas and
the copper, respectively, while the terms of the
denominator are ‘thermal conductances’.

If we replace x, by k,,, in equation (14), we can
deduce a value for this latter by using the measured
experimental value of 7 taken from the curves of Fig. 6.

The Nusselt numbers gained in this way are compared

with the steady-state values in Table 1. Agreement
is quite good which supports the validity of our
assumption that the movement is controlled essen-
tially by forced convective transfer of heat.

5. CRUDE ANALYSIS FOR STEADY-STATE
FLOW

An analysis of electroconvective motion in iso-
thermal conditions for space charge limited injection
(i.e. very large C;) has already been carried oul by
Lacroix et al. [29]. However, in our case of low to
medium values of C,, these results do not apply. Due
to the complexity of the theoretical problem and also
of the exploitation of the experimental results, we
will content ourselves here with the derivation of the
relevant parameters and an estimate of the power
laws governing the observed phenomena. For such an
analysis we make the assumption that due to the low
values of €, the distortion of the electric field £ is
weak (of the order of C)) and thus may be neglected
{we may write £= V/d). The current will also be
taken to be constant for any given value of the voltage.
Two regimes of motion are to be considered: the
viscous dominated one for Re < 10 and the inertially
dominated (or fully turbulent) one for Re > 10. Both
cases must be considered since we did not have access
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Table 1. The Nusselt number as a function of heat flux Q (W) and of applied voltage V
(kV): (T) steady-state conditions; (II) time-dependent regime, using the AT(f) curves and
equation (14)
(W)
V(kV) 1 3 5 7 10 15 20 25 30
12 (D 6.82 7.33 7.12 7.12 7.23 7.33 7.33 7.50 7.40
) 698 703 658 7.59 738 722 708 697 626
10 () 6.44 6.44 6.23 6.00 6.33 6.40 6.37 6.42 5.84
(In) 6.26 5.89 5.82 5.25 541 5.34 6.54 6.10 7.40
8 (D 5.38 5.25 5.25 5.30 5.31 5.39 5.40 5.40 5.39
(1) 4.43 4.63 5.01 5.23 5.35 4.86 5.13 5.35 5.96
6 (I) 443 4.32 4.30 4.26 4.14 4.10 3.99 4.02 3.99
(I1) 4.35 3.95 4.10 3.82 3.83 3.72 3.64 3.76 3.71
to measurements of velocity during the experiments Ru B KqoV 22)
and therefore cannot fix with any certainty the Reyn- J= Rob =
olds numbers. We also consider that the motion and s th
therefore the heat transfer are controlled solely by the 1€ energy balance is then
electrical forces. ., d
T~ (23)
5.1. Velocity dependence on different parameters o )
5.1.1. Viscous dominated regime. Here, we use the  giving the velocity dependence as
energy balance argument that energy dissipation will y
vary with the electrical energy density furnished by W~ \/ (1> (24)
the Coulomb force (i.e. taking only the viscous terms Kp

and the body force in the Navier-Stokes equation)

’

n

% w ~ (gEYW. (18)
The expression gw” can be related to the current den-
sity j = g(KE+w’) and using the experimental fact
that outside the boundary layer on the electrode, i.e.
in the bulk, the velocity w’ is far greater than the drift
velocity (see, for example refs. [23-26]) we may write
Vi
s~ 19
d’ d (19)
We arrive at the following expression for the velocity
dependence in the viscous regime of motion :

ez

5.1.2. Inertially dominated regime. In this case of
fully turbulent flow we equate turbulent kinetic energy
to the work done by the electrical force (i.e. balancing
the inertial terms of the Navier-Stokes equation with
the body force and integrating)

(20)

2w’ ~ qEd = gV 20

If we make an analogy to the Rayleigh-Bénard case,
we may consider that ‘blobs’ of charged liquid burst
from the boundary layer on the injector and move
across the layer to the collector. The charge density
in these blobs will keep a value g very close to that at
the injecting electrode g, if Coulombian repulsion is
negligible, leaving us with the relation pw’'? ~ ¢,V.
The charge density ¢, is related to the current density
J via its value on that electrode

5.2. Nusselt number dependence on velocity

The Nusselt number is defined as the observed heat
flux divided by the heat flux that would occur at the
same temperature difference without convective flow :
Le.

_ KVT+pC < wh)
T k(AT/d)

(25)

or upon integrating

L wlyd
AT

4
0
Nu=1+x'J 9 42 x 14y (26)
0

AT
In non-dimensional terms, this is equivalent to saying
that Nu depends on the Reynolds number (sc w') and
the Prandtl number (oc 3~ ').
5.2.1. Viscous dominated regime. Using the velocity
expression given previously, we may therefore write

: : . vd .
Nu = fiy(Re) " foy(Pr) = fiv (\/<’7V‘j‘>> *fav(Pr)
27
whence we extract the relevant parameter

IVd® (oc jVd%) used in Fig. 5. We may suppose, as
results seem to indicate, that the function f,, can be
approximated by a power law.

5.2.2. Inertially dominated regime. Using relation
(26) for inertial flow the Nusselt number dependence
is

7
Nu = fi(Re) " fu(Pr) = fi; <\/ (épw» fu(Pr).  (28)
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The relevant parameter in this incrtial regime is seen
10 be Id* (% jd%). We consider the function f;, to bec
well represented also by a power law. The maximum
value possible for this power law is found via the fol-
lowing considerations. For strongly convective tlows,
the Nusselt number may be approximated from cqua-
tion (20) by

x " Ovthd
AT

Nux (29)
Supposing that the velocity—temperature fluctuation
correlation (w( is very high, with the r.m.s. tem-
perature value being proportional to AT;2, we find that
with

Nu =« Re Pr (30)
we get
Nu ~ \/( Id;ﬁ> Pr
Kpv-
or
Nu~ J{Id?). (31

Without a full analysis particular to the electro-
convective problem. we cannot give any theorctical
power law exponent in either viscous- or incrtially-
dominated regimes. The law given in expression (31)
merely represents a maximum value of the exponent.
Nevertheless, we may, for comparative purposes,
attempt to deduce power laws by using results already
known for the Rayleigh—Bénard casc and transposing
them to the ETHD one.

For viscous motion, we may refer to an order of
magnitudc analysis on Rayleigh-Bénard convection
by Kraichnan [42]. wherein for high Pr fluids he
showed that Nu » Ra'*, with w' (% Re) ~ Ru? . Itis
casy to deduce the relationship Nu - Re' =, which
when used in expression (24) gives

Nu~ (IVdH' .

For inertially dominated flow, Chu and Goldstein [34]

found experimentally that Nu ~ Ra"*"". Deardorfl

and Willis [35] gave that w' (% Re) ~ Ra'* in this
{ully turbulent regime and thus we have the variation,
using equation (28)

Nu ~ (IdH" %,

More recent experimental and analytical results [49]
in the fully turbulent regime indicate that the Nusselt
number varies as Ra” " and that the velocity »” varics
as Ra’ 7. Though the experimental results are very
convincing, there may be some discussion as to the
validity of somc of the theoretical assumptions made
by these authors. However, using the relationship that
Nu ~ Re*?, in equation (28), leads to a power law

Nu~ (IdH' .

Our cxperimental results (Fig. 5). whether pre-
sented in the viscous or inertial regimes, show vari-
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Fi1G. 7. The total current passing through the celt at different

heat fluxes and for different voltages as a function of the

temperature of the injection plate. (Case of heating and
injection from the same plate.)

ations far stronger than these. Though we are not
quite certain that the results will continue with the
same variation asymptotically. we feel quite sure that
such a transposition of classical Rayleigh ‘Bénard
laws to the electroconvective case is not realistic. This
would suggest that the flow structure in the EHD case
is quite different from that with only buoyancy forces,
and that any analogies made between Rayleigh-
Bénard and electroconvection be done so carefully.

Finally, we note that Lazarenko et al. [10]
attempted a somewhat general analysis of the effects
ol electrical forces on heat transfer and eventually
reached a dependence of Nu on the parameter (/d°)
for both *laminar’ and turbulent flow. with upper and
lower limits for the power law exponents of 0.25 and
(0.5. respectively. Though our viscous regime analysis
does not lead to the same parameter (ours includes a
voltage dependence), it leaves little doubt as to that
for the fully turbulent regime.

6. DISCUSSION AND CONCLUSION

Attempting to cxamine the results serics by series
did not lead us to conclude anything more definite
concerning the possible power law variations. and
this was compounded with the difficulty of fixing the
injection level with any great precision. Figure 7 shows
the total current passing through the cell for given
values of the voltage as a function of the temperature
of the injecting clectrode. The current clearly rises
somewhat dramatically with temperature for the
higher voltages (+30%). The problem with this is
that we have no way of knowing whether this increase
in current is duc to higher injection by the hot clec-
trode or to an increasc in the level of conductivity of
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the liquid. Such imprecisions are unavoidable. How-
ever, we may conclude on a certain number of points:

(1) Electroconvection, in the range of parameters
chosen here, appears, to first approximation, unaffec-
ted by temperature gradients and buoyancy forces.

(2) Nusselt numbers were shown to increase by
up to an order of magnitude when electroconvective
motion was present.

(3) In electroconvective heat transfer the flow struc-
turc appears to be different to that of natural con-
vection.

(4) Relevant parameters governing the electrical
forces were shown to be (1Vd?) for viscous dominated
flow and (/d%) for incrtially dominated flow.

It is quite clear from this that classical heat transfer
results cannot be simply transposed to the electrical
casc and that an analysis of electroconvective flow is
needed as well as, experimentally. measurement of the
velocity between the plates.
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APPENDIX A

The measured electric current in our experiments is due to
two distinguishable processes : residual conduction and the
migration of the injected ions (unipolar injection only). We
explain briefly here how we extract the injected current (/)
from the measured value (1) (see ref. {45]).

The electrical current density, J, through the cell is

J = ¢eE(PK+pK,+nkK) (A1)

where ¢ is the unit charge; P;, the concentration of injected
ions per unit volume; p, the number of dissociated positive
ions; n, the number of dissociated negative ions and K,
K, and K, their respective mobilities. We may also write
J =J,+J., the injection plus the conduction current den-
sities.
The one-dimensional Poisson’s equation is

dE ¢
qc = (Pi+p—n) ; (A2)

(the total charge density is (P,+p—n) - ¢). The conservation
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equations of each species are

d
v (PKEY = kp{—kppn (A3)

d
— = AnKE) = kp{ —kppn (A4)
dx
where kp, is the dissociation constant ; { the molecular dcn'sity
of the dissociable species, and k the recombination constant.
In thermodynamic equilibrium, this is
(A5)
with p, and n, being the equilibrium concentrations of the
positive and negative ions, respectively. Denat [45) numeri-
cally solved this set of equations with the following boundary
conditions:

kn¢ = krpyity

ePl._y=¢
/’l\,u =0
nl, =0
Edx = V.

o (A6)

The injecting electrode at x = 0 is considered positive with
the collector at x = d being of negative polarity. The results
give the non-dimensionalized injection current density
Ji = J/JscL, where Jgo (= &KV7/d?) is the current density
in space charge limited injection conditions (i.e. infinite space
charge density on the injector), and the non-dimensional
conduction current density j. = J/Js as functions of the
parameters C, (= qd*/eV), the injection level, and
Cy (= ad*/2¢KV). C, is the conduction to injection current
ratio. The value C = | is reached at the saturation voltage.
If C, < } the conduction current is negligible and we take
the measured current as being due to injection only. The
injection level (' is then obtained using the cquation
i = CeKV3d*.

If C; > 1, we proceed in the following way. First, we mea-
sure the liquid conductivity ¢ and deduce the value of C,.
From Denat’s non-dimensional curves we take the cor-
responding value of j. By subtracting this from the total
non-dimensional current, we obtain j.. With these valucs of
jiand C,, the same set of curves provide C, (and, clearly, ¢,).
A further correction was carried out to take account of field
enhanced conduction, again using the results by Denat [45].
Briefly, we consider that the saturation current is increased
by a numerical factor, varying between 1.5 and 4.5 in our
experimental conditions, depending on the field £, the per-
mittivity &. Although Denat’s calculations are valid under
hydrostatic conditions, they arc a good approximation in
our case. This is due to the fact that for weak injection, liquid
motion has little influence on charge transfer since the current
is limited by the rate at which the ions are produced at the
electrode and this is independent of the dynamical state of
the system. Then, the transported charge is almost the same
with or without liquid motion.

APPENDIX B

The lower plate is heated from time ¢ = 0 and the heat is
then transferred by the liquid and by the Plexiglas frame to
the upper plate which is kept at constant temperature. For
each medium (liquid, copper, Plexiglas) the heat equation is

foT
oG\ . | +vH =0,
(9

We assume for simplicity that the temperature gradients in
the liquid and in the Plexiglas are vertical only and that the
copper plate is isothermal. Integrating equation (B!) over
the depth of the copper plate, i.c. from z = 0 to d,. we obtain
i o7,

H, = Hl)_p('(/r(‘dl St

(BI)

(B2)
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where H, is the heat flux furnished to the plate and H, is
that passing from the plate to the liquid and Plexiglas. The
subscript C refers to copper. If we now integrate the heat
equation over each medium between the two electrode plates
(d, € z € d,) we obtain for the liquid and for the Plexiglas,
respectively

oT
pLCpLJ 'gdxdy de+ (Hi—H)S =0 (B
o

8T
PPQ}PJ S?d~’fd."d'—"+(sz_Hm)5P =0. (B4)
-

(Subscripts 1 and 2 refer to the lower and upper plates,
respectively.)

For the first terms in equations (B3) and (B4) we will use
the approximation that they can be represented as mean
values over the whole volume Q

I 8T +Ty)

oT
pC},LB?d,\‘dydz = imC,,r-»-——»«w (BS)

&t

{m is the mass of the medium in question). Using equation
(BS), the addition of equations (B3) and (B4) gives

HT +Ts)

i
E(CpL’"L“F Ceitp} 5
+ S H L+ SpHpy— St Hy ~ SpHp =0 (BS)

where

oT :
(SuHy+SpHy) = ScHy = ScHy—meCye=t. (BT)

(See equation (B2).) We now make the usual approximation
that the flux at the upper plate (at constant temperature) is
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equal to the product of the thermal conductivity and an
average temperature gradient. With T, fixed, we have
Ty, T\ +Ty) (T, —T,)
T T "
and equation (B6) becomes

% (Coom + Crpintp) ()(T\d{ r) + Sk ((Z: ‘:::))
(1,-Ty (T, —Ta)
{d—d)) ot
This equation has a simple analytic solution

+aSeky —ScHy+meCoe =0. (BS)

T =T = (T,(0) = T exp (—}')

Qd,—d)) !
(e ()

where
Q = ScH, (B10)
and
i i (dy~dy)
7= (iCmeL+ EC{,pmp—%C,,CmC)m. {B11)

Equations (B9) and (BI1) are equations (13} and (14)
given in the main text. Since the AT(¢) variation is expon-
ential then we can conclude that the ‘thermal resistance’ of
the liquid is independent of 7 in our conditions.

Let us note that we implicitly assumed that the conduction
in the Plexiglas in the transitory regime was analogous to
that in the steady-state regime. We verified this for very
weak perturbations of the equilibrium state. By recording the
variation of AT in the hydrostatic case (heating from above)
we saw that the relaxation was of the exponential type (see
equation (B9)) and that the time constant obtained was
7, = 44.8 min. This value introduced into equation (B11)
gives once again a value for @ 0f 0.27.

AUGMENTATION DU TRANSFERT THERMIQUE A TRAVERS UNE COUCHE
HORIZONTALE DE LIQUIDE DU A L’ELECTROCONVECTION ENTRE DEUX
PLAQUES PLANES ET PARALLELES

Résumé—On présente une étude du transfert thermique a travers une couche horizontale de liquid dii a
I'électroconvection entre deux plaques planes et paralléles. Une injection unipolaire d’ions peut étre créée
soit 4 I'électrode supérieure soit d I’électrode inférieure, la couche étant chauffée indépendamment en haut
ou en bas. Ces quatre situations sont examinées. En régime transitoire, il est possible de calculer le nombre
de Nusselt en s’appuyant sur un modéle électrique simple (circuit Résistance-Capacité en paralléle). Les
valeurs obtenues peuvent augmenter d’un ordre de grandeur en présence de champ électrique par rapport
au cas purement thermique et sont en bon accord avec les résultats en régime stationnaire. Dans tous les
cas considéres, les forces de gravité sont négligeables par rapport & la force de Coulomb. A I'aide d’une
analyse de I'état stationnaire, on déduit les parameétres gouvernant le transfert thermique; les produits
1Vd® en régime non-turbulent, et /4° en régime turbulent.

VERBESSERUNG DES WARMEUBERGANGS DURCH ELEKTROKONVEKTION
AUFGRUND DER INJEKTION EINER RAUMLADUNG ZWISCHEN ZWEI PARALLELE
PLATTEN

Zusammenfassung—Der Wirmetbergang zwischen zwei parallelen Platten bei Elektrokonvektion wird
untersucht. Ein unipolarer lonenstrom kann entweder an der oberen oder an der unteren Elektrode
eingebracht werden, wobei gleichzeitig die Fliissigkeitsschicht von oben oder unten geheizt wird (stabile
oder instabile Schichtung). Diese vier unterschiedlichen Konfigurationen werden getrennt behandelt. Das
Ubergangsgebiet wird analytisch untersucht. Unter Verwendung einer Analogie zwischen dem Experiment
und einem elektrisch parallel geschalteten Widerstands-Kapazitdten-Modell wird damit die Berechnung
der thermischen Nusselt-Zahl mdglich. Die so ermittelten Nzherungswerte zeigen eine Zunahme der
Nusselt-Zah! um bis zu einer Gréf8enordnung und stimmen sehr gut mit stationiren Daten iiberein. Auf
diese Weise wird demonstriert, daB fiir alle betrachteten Fille die elektrischen Einflisse vollkommen
{iber die Auftriebseffekte dominieren. Eine kurze Analyse des stationiiren Zustandes liefert die fiir den
Wirmelibergang wesentlichen Parameter: /d° fiir die volistindig turbulente Strémung und JVd® fiir nicht-
turbulente Bedingungen.
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UHTEHCH®UKALIUA TEIUIONEPEHOCA 3A CYET QJIEKTPOKOHBEKLHWH,
WHAYUHUPOBAHHON MPOCTPAHCTBEHHBIM 3APAIOM MEXIY TNAPAJIIEJIBHBIMA
TUTACTUHAMH

Amorama—HccenenyeTca TenonepeHoc Mexay NByMs NapaiieibHbIMK NJJACTHHAMHE 34 CYET IEKTPO-
KoHpeKuKrH. BBOA MOHOB OZHOIO 3HAKA MOMKET OCYILUECTBJATHCH AMGO y BEpXHero, nubo y HHUXHErO
JIEKTPOJA, a HATPEB CJIOSK KHAKOCTH-—CBEPXY HJIM CHH3Y (IpM yCTOHYMBOH WM HEyCTOHYHMBOMR
crpatnduxauun). OTIEIBHO PACCMATPUBAIOTCA ITH YETHIPE BO3MOXKHBIX Konburypauns. I[Iposoantcs
aHAnNW3 JUTM Cy¥as HeCTALHOHAPHOIO PEXHMMAa, NO3BOJIAIOUIHI PACCUMTAaTS Telosoe yueao HyccensTa
¢ yHETOM ZHAJIOIHH C 3MEKTPHYECKOH UENbIO CONPOTHBACHAH H KOHAEHCATOPOB C NAPANEIBHBIM COeIH-
HeHueM. ANMPOKCHMHPOBAHHBIC TakuM 00pasoM 3HAYCHHA NOKA3BIBAIOT yBesiuvenne uucina Hycceanta
Ha NOPSOOK M O4EHL XOPOWIO COTACYIOTCA C JAHHBIMH [UIA CTAlMOHapHOro ciyvas. ITokasano, 9To BO
BCEX PACCMATPHBAEMBIX Cay4asx iexTpuueckue 3ddextsl npeobranaoT naa edpekTamy TOABEMHBIX
cun. Ha oCHOBe KpaTKOro aHaiu3a CTallMOHADHOTO COCTOSHHM MOJIYYeHb! COOTBETCTBYIOIUHE Ofpe-
Je10oLMe TAPaMETPLI TEMLIONEPEHOCA VIS OJIHOCTBIO TYPOYNIEHTHOIO TEUEHMS U B YCIIOBHSIX OTCYTCT-
BHsE TYPOYJICHTHOCTH.



